From 86954016384c53745d6144af80da5957ad2e82fd Mon Sep 17 00:00:00 2001 From: Joris Van den Bossche <jorisvandenbossche@gmail.com> Date: Tue, 3 Dec 2024 19:34:25 +0100 Subject: [PATCH] PERF: improve construct_1d_object_array_from_listlike (#60461) * PERF: improve construct_1d_object_array_from_listlike * use np.fromiter and update annotation --- pandas/core/dtypes/cast.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/pandas/core/dtypes/cast.py b/pandas/core/dtypes/cast.py index 137a49c448..02b9291da9 100644 --- a/pandas/core/dtypes/cast.py +++ b/pandas/core/dtypes/cast.py @@ -87,8 +87,8 @@ from pandas.io._util import _arrow_dtype_mapping if TYPE_CHECKING: from collections.abc import ( + Collection, Sequence, - Sized, ) from pandas._typing import ( @@ -1581,7 +1581,7 @@ def _maybe_box_and_unbox_datetimelike(value: Scalar, dtype: DtypeObj): return _maybe_unbox_datetimelike(value, dtype) -def construct_1d_object_array_from_listlike(values: Sized) -> np.ndarray: +def construct_1d_object_array_from_listlike(values: Collection) -> np.ndarray: """ Transform any list-like object in a 1-dimensional numpy array of object dtype. @@ -1599,11 +1599,9 @@ def construct_1d_object_array_from_listlike(values: Sized) -> np.ndarray: ------- 1-dimensional numpy array of dtype object """ - # numpy will try to interpret nested lists as further dimensions, hence - # making a 1D array that contains list-likes is a bit tricky: - result = np.empty(len(values), dtype="object") - result[:] = values - return result + # numpy will try to interpret nested lists as further dimensions in np.array(), + # hence explicitly making a 1D array using np.fromiter + return np.fromiter(values, dtype="object", count=len(values)) def maybe_cast_to_integer_array(arr: list | np.ndarray, dtype: np.dtype) -> np.ndarray: -- GitLab