diff --git a/.README.md.swp b/.README.md.swp
new file mode 100644
index 0000000000000000000000000000000000000000..94811cd233a7fc748f1600e2796f98e98f93e8f4
Binary files /dev/null and b/.README.md.swp differ
diff --git a/README.md b/README.md
index b9d2345af90520de6ba561a6633bfd67c3fe6ce0..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644
--- a/README.md
+++ b/README.md
@@ -1,353 +0,0 @@
-# Mistral Inference
-<a target="_blank" href="https://colab.research.google.com/github/mistralai/mistral-inference/blob/main/tutorials/getting_started.ipynb">
-  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
-</a>
-
-
-This repository contains minimal code to run Mistral models.
-
-Blog 7B: [https://mistral.ai/news/announcing-mistral-7b/](https://mistral.ai/news/announcing-mistral-7b/)\
-Blog 8x7B: [https://mistral.ai/news/mixtral-of-experts/](https://mistral.ai/news/mixtral-of-experts/)\
-Blog 8x22B: [https://mistral.ai/news/mixtral-8x22b/](https://mistral.ai/news/mixtral-8x22b/)\
-Blog Codestral 22B: [https://mistral.ai/news/codestral](https://mistral.ai/news/codestral/) \
-Blog Codestral Mamba 7B: [https://mistral.ai/news/codestral-mamba/](https://mistral.ai/news/codestral-mamba/) \
-Blog Mathstral 7B: [https://mistral.ai/news/mathstral/](https://mistral.ai/news/mathstral/) \
-Blog Nemo: [https://mistral.ai/news/mistral-nemo/](https://mistral.ai/news/mistral-nemo/) \
-Blog Mistral Large 2: [https://mistral.ai/news/mistral-large-2407/](https://mistral.ai/news/mistral-large-2407/) \
-Blog Pixtral 12B: [https://mistral.ai/news/pixtral-12b/](https://mistral.ai/news/pixtral-12b/)
-
-Discord: [https://discord.com/invite/mistralai](https://discord.com/invite/mistralai)\
-Documentation: [https://docs.mistral.ai/](https://docs.mistral.ai/)\
-Guardrailing: [https://docs.mistral.ai/usage/guardrailing](https://docs.mistral.ai/usage/guardrailing)
-
-## Installation
-
-Note: You will use a GPU to install `mistral-inference`, as it currently requires `xformers` to be installed and `xformers` itself needs a GPU for installation.
-
-### PyPI
-
-```
-pip install mistral-inference
-```
-
-### Local
-
-```
-cd $HOME && git clone https://github.com/mistralai/mistral-inference
-cd $HOME/mistral-inference && poetry install .
-```
-
-## Model download
-
-| Name        | Download | md5sum |
-|-------------|-------|-------|
-| 7B Instruct | https://models.mistralcdn.com/mistral-7b-v0-3/mistral-7B-Instruct-v0.3.tar | `80b71fcb6416085bcb4efad86dfb4d52` |
-| 8x7B Instruct | https://models.mistralcdn.com/mixtral-8x7b-v0-1/Mixtral-8x7B-v0.1-Instruct.tar (**Updated model coming soon!**) | `8e2d3930145dc43d3084396f49d38a3f` |
-| 8x22 Instruct | https://models.mistralcdn.com/mixtral-8x22b-v0-3/mixtral-8x22B-Instruct-v0.3.tar | `471a02a6902706a2f1e44a693813855b` |
-| 7B Base | https://models.mistralcdn.com/mistral-7b-v0-3/mistral-7B-v0.3.tar | `0663b293810d7571dad25dae2f2a5806` |
-| 8x7B |     **Updated model coming soon!**       | - |
-| 8x22B | https://models.mistralcdn.com/mixtral-8x22b-v0-3/mixtral-8x22B-v0.3.tar | `a2fa75117174f87d1197e3a4eb50371a` |
-| Codestral 22B | https://models.mistralcdn.com/codestral-22b-v0-1/codestral-22B-v0.1.tar | `1ea95d474a1d374b1d1b20a8e0159de3` |
-| Mathstral 7B | https://models.mistralcdn.com/mathstral-7b-v0-1/mathstral-7B-v0.1.tar | `5f05443e94489c261462794b1016f10b` |
-| Codestral-Mamba 7B | https://models.mistralcdn.com/codestral-mamba-7b-v0-1/codestral-mamba-7B-v0.1.tar | `d3993e4024d1395910c55db0d11db163` |
-| Nemo Base | https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-base-2407.tar | `c5d079ac4b55fc1ae35f51f0a3c0eb83` |
-| Nemo Instruct | https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-instruct-2407.tar | `296fbdf911cb88e6f0be74cd04827fe7` |
-| Mistral Large 2 | https://models.mistralcdn.com/mistral-large-2407/mistral-large-instruct-2407.tar | `fc602155f9e39151fba81fcaab2fa7c4` |
-
-Note: 
-- **Important**:
-  - `mixtral-8x22B-Instruct-v0.3.tar` is exactly the same as [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1), only stored in `.safetensors` format
-  - `mixtral-8x22B-v0.3.tar` is the same as [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1), but has an extended vocabulary of 32768 tokens.
-  - `codestral-22B-v0.1.tar` has a custom non-commercial license, called [Mistral AI Non-Production (MNPL) License](https://mistral.ai/licenses/MNPL-0.1.md)
-  - `mistral-large-instruct-2407.tar` has a custom non-commercial license, called [Mistral AI Research (MRL) License](https://mistral.ai/licenses/MRL-0.1.md)
-- All of the listed models above support function calling. For example, Mistral 7B Base/Instruct v3 is a minor update to Mistral 7B Base/Instruct v2,  with the addition of function calling capabilities. 
-- The "coming soon" models will include function calling as well. 
-- You can download the previous versions of our models from our [docs](https://docs.mistral.ai/getting-started/open_weight_models/#downloading).
-
-### Usage
-
-**News!!!**: Mistral Large 2 is out. Read more about its capabilities [here](https://mistral.ai/news/mistral-large-2407/).
-
-Create a local folder to store models
-```sh
-export MISTRAL_MODEL=$HOME/mistral_models
-mkdir -p $MISTRAL_MODEL
-```
-
-Download any of the above links and extract the content, *e.g.*:
-
-```sh
-export 12B_DIR=$MISTRAL_MODEL/12B_Nemo
-wget https://models.mistralcdn.com/mistral-nemo-2407/mistral-nemo-instruct-2407.tar
-mkdir -p $12B_DIR
-tar -xf mistral-nemo-instruct-2407.tar -C $12B_DIR
-```
-
-or 
-
-```sh
-export M8x7B_DIR=$MISTRAL_MODEL/8x7b_instruct
-wget https://models.mistralcdn.com/mixtral-8x7b-v0-1/Mixtral-8x7B-v0.1-Instruct.tar
-mkdir -p $M8x7B_DIR
-tar -xf Mixtral-8x7B-v0.1-Instruct.tar -C $M8x7B_DIR
-```
-
-## Usage
-
-The following sections give an overview of how to run the model from the Command-line interface (CLI) or directly within Python.
-
-### CLI
-
-- **Demo**
-
-To test that a model works in your setup, you can run the `mistral-demo` command.
-*E.g.* the 12B Mistral-Nemo model can be tested on a single GPU as follows:
-
-```sh
-mistral-demo $12B_DIR
-```
-
-Large models, such **8x7B** and **8x22B** have to be run in a multi-GPU setup.
-For these models, you can use the following command:
-
-```sh
-torchrun --nproc-per-node 2 --no-python mistral-demo $M8x7B_DIR
-```
-
-*Note*: Change `--nproc-per-node` to more GPUs if available.
-
-- **Chat**
-
-To interactively chat with the models, you can make use of the `mistral-chat` command.
-
-```sh
-mistral-chat $12B_DIR --instruct --max_tokens 1024 --temperature 0.35
-```
-
-For large models, you can make use of `torchrun`.
-
-```sh
-torchrun --nproc-per-node 2 --no-python mistral-chat $M8x7B_DIR --instruct
-```
-
-*Note*: Change `--nproc-per-node` to more GPUs if necessary (*e.g.* for 8x22B).
-
-- **Chat with Codestral**
-
-To use [Codestral](https://mistral.ai/news/codestral/) as a coding assistant you can run the following command using `mistral-chat`.
-Make sure `$M22B_CODESTRAL` is set to a valid path to the downloaded codestral folder, e.g. `$HOME/mistral_models/Codestral-22B-v0.1`
-
-```sh
-mistral-chat $M22B_CODESTRAL --instruct --max_tokens 256
-```
-
-If you prompt it with *"Write me a function that computes fibonacci in Rust"*, the model should generate something along the following lines:
-
-```sh
-Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.
-
-fn fibonacci(n: u32) -> u32 {
-    match n {
-        0 => 0,
-        1 => 1,
-        _ => fibonacci(n - 1) + fibonacci(n - 2),
-    }
-}
-
-fn main() {
-    let n = 10;
-    println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
-}
-
-This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.
-```
-
-You can continue chatting afterwards, *e.g.* with *"Translate it to Python"*.
-
-- **Chat with Codestral-Mamba**
-
-To use [Codestral-Mamba](https://mistral.ai/news/codestral-mamba/) as a coding assistant you can run the following command using `mistral-chat`.
-Make sure `$7B_CODESTRAL_MAMBA` is set to a valid path to the downloaded codestral-mamba folder, e.g. `$HOME/mistral_models/mamba-codestral-7B-v0.1`.
-
-You then need to additionally install the following packages:
-  
-```
-pip install packaging mamba-ssm causal-conv1d transformers
-```
-
-before you can start chatting:
-
-```sh
-mistral-chat $7B_CODESTRAL_MAMBA --instruct --max_tokens 256
-```
-
-- **Chat with Mathstral**
-
-To use [Mathstral](https://mistral.ai/news/mathstral/) as an assistant you can run the following command using `mistral-chat`.
-Make sure `$7B_MATHSTRAL` is set to a valid path to the downloaded codestral folder, e.g. `$HOME/mistral_models/mathstral-7B-v0.1`
-
-```sh
-mistral-chat $7B_MATHSTRAL --instruct --max_tokens 256
-```
-
-If you prompt it with *"Albert likes to surf every week. Each surfing session lasts for 4 hours and costs $20 per hour. How much would Albert spend in 5 weeks?"*, the model should answer with the correct calculation.
-
-You can then continue chatting afterwards, *e.g.* with *"How much would he spend in a year?"*.
-
-### Python
-
-- *Instruction Following*:
-
-```py
-from mistral_inference.transformer import Transformer
-from mistral_inference.generate import generate
-
-from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
-from mistral_common.protocol.instruct.messages import UserMessage
-from mistral_common.protocol.instruct.request import ChatCompletionRequest
-
-
-tokenizer = MistralTokenizer.from_file("./mistral-nemo-instruct-v0.1/tekken.json")  # change to extracted tokenizer file
-model = Transformer.from_folder("./mistral-nemo-instruct-v0.1")  # change to extracted model dir
-
-prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
-
-completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
-
-tokens = tokenizer.encode_chat_completion(completion_request).tokens
-
-out_tokens, _ = generate([tokens], model, max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
-result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
-
-print(result)
-```
-
-- *Function Calling*:
-
-```py
-from mistral_common.protocol.instruct.tool_calls import Function, Tool
-
-completion_request = ChatCompletionRequest(
-    tools=[
-        Tool(
-            function=Function(
-                name="get_current_weather",
-                description="Get the current weather",
-                parameters={
-                    "type": "object",
-                    "properties": {
-                        "location": {
-                            "type": "string",
-                            "description": "The city and state, e.g. San Francisco, CA",
-                        },
-                        "format": {
-                            "type": "string",
-                            "enum": ["celsius", "fahrenheit"],
-                            "description": "The temperature unit to use. Infer this from the users location.",
-                        },
-                    },
-                    "required": ["location", "format"],
-                },
-            )
-        )
-    ],
-    messages=[
-        UserMessage(content="What's the weather like today in Paris?"),
-        ],
-)
-
-tokens = tokenizer.encode_chat_completion(completion_request).tokens
-
-out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
-result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
-
-print(result)
-```
-
-- *Fill-in-the-middle (FIM)*:
-
-Make sure to have `mistral-common >= 1.2.0` installed:
-```
-pip install --upgrade mistral-common
-```
-
-You can simulate a code completion in-filling as follows.
-
-```py
-from mistral_inference.transformer import Transformer
-from mistral_inference.generate import generate
-from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
-from mistral_common.tokens.instruct.request import FIMRequest
-
-tokenizer = MistralTokenizer.from_model("codestral-22b")
-model = Transformer.from_folder("./mistral_22b_codestral")
-
-prefix = """def add("""
-suffix = """    return sum"""
-
-request = FIMRequest(prompt=prefix, suffix=suffix)
-
-tokens = tokenizer.encode_fim(request).tokens
-
-out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
-result = tokenizer.decode(out_tokens[0])
-
-middle = result.split(suffix)[0].strip()
-print(middle)
-```
-
-### One-file-ref
-
-If you want a self-contained implementation, look at `one_file_ref.py`, or run it with 
-
-```
-python -m one_file_ref $M7B_DIR
-```
-
-which should give something along the following lines:
-
-```
-This is a test of the emergency broadcast system. This is only a test.
-
-If this were a real emergency, you would be told what to do.
-
-This is a test
-=====================
-This is another test of the new blogging software. I’m not sure if I’m going to keep it or not. I’m not sure if I’m going to keep
-=====================
-This is a third test, mistral AI is very good at testing. 🙂
-
-This is a third test, mistral AI is very good at testing. 🙂
-
-This
-=====================
-```
-
-**Note**: To run self-contained implementations, you need to do a local installation.
-
-### Test
-
-To run logits equivalence:
-```
-python -m pytest tests
-```
-
-## Deployment
-
-The `deploy` folder contains code to build a [vLLM](https://M7B_DIR.com/vllm-project/vllm) image with the required dependencies to serve the Mistral AI model. In the image, the [transformers](https://github.com/huggingface/transformers/) library is used instead of the reference implementation. To build it:
-
-```bash
-docker build deploy --build-arg MAX_JOBS=8
-```
-
-Instructions to run the image can be found in the [official documentation](https://docs.mistral.ai/quickstart).
-
-
-## Model platforms
-
-- Use Mistral models on [Mistral AI official API](https://console.mistral.ai/) (La Plateforme)
-- Use Mistral models via [cloud providers](https://docs.mistral.ai/deployment/cloud/overview/)
-
-## References
-
-[1]: [LoRA](https://arxiv.org/abs/2106.09685): Low-Rank Adaptation of Large Language Models, Hu et al. 2021