Newer
Older
import json
import logging
import math
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import fire
from mistral_common.tokens.tokenizers.base import Tokenizer
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from simple_parsing.helpers import Serializable
from torch import nn
@dataclass
class MoeArgs(Serializable):
num_experts: int
num_experts_per_tok: int
@dataclass
dim: int
n_layers: int
head_dim: int
hidden_dim: int
n_heads: int
n_kv_heads: int
norm_eps: float
vocab_size: int
moe: MoeArgs
# For rotary embeddings. If not set, will be inferred
max_batch_size: int = 0
max_seq_len: int = 0
def is_torchrun() -> bool:
required_vars = ["MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE"]
return all(var in os.environ for var in required_vars)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def repeat_kv(keys: torch.Tensor, values: torch.Tensor, repeats: int):
keys = torch.repeat_interleave(keys, repeats=repeats, dim=2)
values = torch.repeat_interleave(values, repeats=repeats, dim=2)
return keys, values
def _reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""
freqs_cis: complex - (seq_len, head_dim / 2)
x: complex - (bsz, seq_len, head_dim / 2)
"""
ndim = x.ndim
assert 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), (
freqs_cis.shape,
(x.shape[1], x.shape[-1]),
)
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = _reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.repeats = self.n_heads // self.n_kv_heads
self.scale = self.args.head_dim**-0.5
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
self._cache_k: Optional[torch.Tensor] = None
self._cache_v: Optional[torch.Tensor] = None
def get_caches(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
dtype, device = x.dtype, x.device
assert x.shape[0] <= self.args.max_batch_size
assert x.shape[1] <= self.args.max_seq_len
if self._cache_k is None:
self._cache_k = torch.empty(
(
self.args.max_batch_size,
self.args.max_seq_len,
self.n_kv_heads,
self.args.head_dim,
),
dtype=dtype,
device=device,
)
if self._cache_v is None:
self._cache_v = torch.empty(
(
self.args.max_batch_size,
self.args.max_seq_len,
self.n_kv_heads,
self.args.head_dim,
),
dtype=dtype,
device=device,
)
return self._cache_k, self._cache_v
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
positions: torch.Tensor,
mask: Optional[torch.Tensor],
) -> torch.Tensor:
bsz, seqlen, _ = x.shape
cache_k, cache_v = self.get_caches(x)
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_heads, self.args.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
scatter_pos = positions[None, :, None, None].repeat(bsz, 1, self.n_kv_heads, self.args.head_dim)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
cache_k[:bsz].scatter_(dim=1, index=scatter_pos, src=xk)
cache_v[:bsz].scatter_(dim=1, index=scatter_pos, src=xv)
if positions.shape[0] > 1:
# prefill
key, value = repeat_kv(xk, xv, self.repeats)
else:
assert mask is None
cur_pos = int(positions[-1].item() + 1)
key, value = repeat_kv(
cache_k[:bsz, :cur_pos, ...],
cache_v[:bsz, :cur_pos, ...],
self.repeats,
)
query = xq.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# scores : [bsz, n_heads, seqlen | 1, seqlen]
scores = torch.matmul(query, key.transpose(2, 3)) * self.scale
if mask is not None:
scores += mask[None, None, ...]
scores = scores.float()
scores = nn.functional.softmax(scores, dim=-1).type_as(query)
output = torch.matmul(scores, value) # (bs, n_local_heads, slen, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
super().__init__()
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
def forward(self, x) -> torch.Tensor:
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class MoeLayer(nn.Module):
def __init__(self, experts: List[nn.Module], gate: nn.Module, moe_args: MoeArgs):
super().__init__()
assert len(experts) > 0
self.experts = nn.ModuleList(experts)
self.gate = gate
self.args = moe_args
def forward(self, inputs: torch.Tensor):
inputs_squashed = inputs.view(-1, inputs.shape[-1])
gate_logits = self.gate(inputs_squashed)
weights, selected_experts = torch.topk(gate_logits, self.args.num_experts_per_tok)
weights = nn.functional.softmax(
weights,
dim=1,
dtype=torch.float,
).type_as(inputs)
results = torch.zeros_like(inputs_squashed)
for i, expert in enumerate(self.experts):
batch_idx, nth_expert = torch.where(selected_experts == i)
results[batch_idx] += weights[batch_idx, nth_expert, None] * expert(inputs_squashed[batch_idx])
return results.view_as(inputs)
class TransformerBlock(nn.Module):
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = MoeLayer(
experts=[FeedForward(args=args) for _ in range(args.moe.num_experts)],
gate=nn.Linear(args.dim, args.moe.num_experts, bias=False),
moe_args=args.moe,
)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.args = args
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
positions: torch.Tensor,
mask: Optional[torch.Tensor],
) -> torch.Tensor:
r = self.attention.forward(self.attention_norm(x), freqs_cis, positions, mask)
h = x + r
r = self.feed_forward.forward(self.ffn_norm(h))
out = h + r
return out
def precompute_freqs_cis(dim: int, end: int, theta: float) -> torch.Tensor:
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
return torch.polar(torch.ones_like(freqs), freqs) # complex64
class Transformer(nn.Module):
def __init__(
self,
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
pipeline_rank: int = 0,
num_pipeline_ranks: int = 1,
):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
assert pipeline_rank < num_pipeline_ranks, (pipeline_rank, num_pipeline_ranks)
self.pipeline_rank = pipeline_rank
self.num_pipeline_ranks = num_pipeline_ranks
self._precomputed_freqs_cis: Optional[torch.Tensor] = None
# Modules specific to some ranks:
self.tok_embeddings: Optional[nn.Embedding] = None
self.norm: Optional[RMSNorm] = None
self.output: Optional[nn.Linear] = None
if pipeline_rank == 0:
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
if pipeline_rank == num_pipeline_ranks - 1:
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
# Initialize all layers but slice off those not of this rank.
layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
num_layers_per_rank = math.ceil(args.n_layers / self.num_pipeline_ranks)
offset = self.pipeline_rank * num_layers_per_rank
end = min(args.n_layers, offset + num_layers_per_rank)
self.layers = nn.ModuleDict({str(i): layers[i] for i in range(offset, end)})
self.n_local_layers = len(self.layers)
@property
def dtype(self) -> torch.dtype:
return next(self.parameters()).dtype
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@property
def freqs_cis(self) -> torch.Tensor:
# We cache freqs_cis but need to take care that it is on the right device
# and has the right dtype (complex64). The fact that the dtype is different
# from the module's dtype means we cannot register it as a buffer
if self._precomputed_freqs_cis is None:
theta = self.args.rope_theta or 1000000.0
self._precomputed_freqs_cis = precompute_freqs_cis(self.args.head_dim, 128_000, theta)
if self._precomputed_freqs_cis.device != self.device:
self._precomputed_freqs_cis = self._precomputed_freqs_cis.to(device=self.device)
return self._precomputed_freqs_cis
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
):
freqs_cis = self.freqs_cis[positions]
(bsz, seqlen) = input_ids.shape
if self.pipeline_rank == 0:
assert self.tok_embeddings is not None
h = self.tok_embeddings(input_ids)
assert h.shape == (bsz, seqlen, self.args.dim)
assert h.dtype == self.dtype
else:
h = torch.empty(bsz, seqlen, self.args.dim, device=self.device, dtype=self.dtype)
torch.distributed.recv(h, src=self.pipeline_rank - 1)
mask: Optional[torch.Tensor] = None
if input_ids.shape[1] > 1:
tensor = torch.full(
(seqlen, seqlen),
dtype=h.dtype,
fill_value=1,
device=h.device,
)
mask = torch.log(torch.tril(tensor, diagonal=0)).to(h.dtype)
for layer in self.layers.values():
h = layer(h, freqs_cis, positions, mask)
if self.pipeline_rank < self.num_pipeline_ranks - 1:
torch.distributed.send(h, dst=self.pipeline_rank + 1)
outs = torch.empty(*h.shape[:-1], self.vocab_size, device=h.device, dtype=h.dtype)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
else:
assert self.output is not None
assert self.norm is not None
outs = self.output(self.norm(h))
if self.num_pipeline_ranks > 1:
torch.distributed.broadcast(outs, src=self.num_pipeline_ranks - 1)
return outs.float()
def load_state_dict(self, state_dict, *args, **kwargs):
state_to_load = {}
skipped = set([])
for k, v in state_dict.items():
if k.startswith("tok_embeddings"):
if self.pipeline_rank == 0:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
elif k.startswith("norm") or k.startswith("output"):
if self.pipeline_rank == self.num_pipeline_ranks - 1:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
elif k.startswith("layers"):
layer_id = k.split(".")[1]
if layer_id in self.layers:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
else:
raise ValueError(f"Unexpected key {k}")
assert set(state_dict.keys()) == skipped.union(set(state_to_load.keys()))
super().load_state_dict(state_to_load, *args, **kwargs)
@staticmethod
def from_folder(
folder: Path,
max_batch_size: int,
max_seq_len: int,
num_pipeline_ranks: int = 1,
device="cuda",
dtype=torch.float16,
) -> "Transformer":
with open(folder / "params.json", "r") as f:
model_args.max_batch_size = max_batch_size
model_args.max_seq_len = max_seq_len
if num_pipeline_ranks > 1:
pipeline_rank = torch.distributed.get_rank()
else:
pipeline_rank = 0
with torch.device("meta"):
model = Transformer(
model_args,
pipeline_rank=pipeline_rank,
num_pipeline_ranks=num_pipeline_ranks,
)
pt_model_file = Path(folder) / "consolidated.00.pth"
safetensors_model_file = Path(folder) / "consolidated.safetensors"
assert (
pt_model_file.exists() or safetensors_model_file.exists()
), f"Make sure either {pt_model_file} or {safetensors_model_file} exists"
assert not (
pt_model_file.exists() and safetensors_model_file.exists()
), f"Both {pt_model_file} and {safetensors_model_file} cannot exist"
if pt_model_file.exists():
loaded = torch.load(str(pt_model_file), mmap=True)
else:
loaded = safetensors.torch.load_file(str(safetensors_model_file))
model.load_state_dict(loaded, assign=True, strict=True)
return model.to(device=device, dtype=dtype)
def load_tokenizer(model_path: Path) -> MistralTokenizer:
tokenizer = [f for f in os.listdir(Path(model_path)) if f.startswith("tokenizer.model")]
assert (
len(tokenizer) == 1
), f"Multiple tokenizers {', '.join(tokenizer)} found in `model_path`, make sure to only have one tokenizer"
tokenizer = MistralTokenizer.from_file(str(model_path / tokenizer[0]))
return tokenizer
def generate(prompts: List[str], model: Transformer, tokenizer: Tokenizer, max_tokens: int):
encoded_prompts = [tokenizer.encode(prompt, bos=True, eos=False) for prompt in prompts]
prompt_lens = [len(x) for x in encoded_prompts]
min_prompt_len = min(prompt_lens)
max_prompt_len = max(prompt_lens)
input_tokens = torch.full(
(len(prompts), max_prompt_len),
dtype=torch.long,
device="cuda",
)
for i, encoded in enumerate(encoded_prompts):
input_tokens[i, : len(encoded)] = torch.tensor(encoded).to(input_tokens)
input_mask = input_tokens != tokenizer._model.pad_id()
# pre-fill
positions = torch.arange(0, min_prompt_len).to("cuda")
logits = model.forward(input_tokens[:, :min_prompt_len], positions)
logprobs = nn.functional.log_softmax(logits, dim=-1)
# decode
generated = []
all_logprobs = [
logprobs[:, :-1, :].gather(2, input_tokens[:, 1:min_prompt_len, None]).squeeze(-1),
]
for cur_pos in range(min_prompt_len, max_tokens):
next_token = torch.argmax(logprobs[:, -1, :], dim=-1)
if cur_pos < input_mask.shape[1]:
next_token = torch.where(input_mask[:, cur_pos], input_tokens[:, cur_pos], next_token)
all_logprobs.append(
logprobs[:, -1, :].gather(1, next_token[:, None]),
)
generated.append(next_token[:, None])
logits = model.forward(next_token[:, None], torch.LongTensor([cur_pos]).to(next_token))
logprobs = nn.functional.log_softmax(logits, dim=-1)
all_logprobs_merged = torch.cat(all_logprobs, 1)
res = []
if max_tokens > 0:
generated = torch.cat(generated, 1)
for i, x in enumerate(encoded_prompts):
res.append(tokenizer.decode(x[:min_prompt_len] + generated[i].tolist()))
return res, all_logprobs_merged
def demo(model_path: str, max_tokens: int = 30):
if is_torchrun():
torch.distributed.init_process_group()
torch.cuda.set_device(torch.distributed.get_rank())
should_print = torch.distributed.get_rank() == 0
num_pipeline_ranks = torch.distributed.get_world_size()
num_pipeline_ranks = 1
mistral_tokenizer: MistralTokenizer = load_tokenizer(Path(model_path))
tokenizer: Tokenizer = mistral_tokenizer.instruct_tokenizer.tokenizer
transformer = Transformer.from_folder(
Path(model_path),
max_batch_size=3,
max_seq_len=max_tokens,
num_pipeline_ranks=num_pipeline_ranks,
)
res, logprobs = generate(
[
"This is a test",
"This is another great test",
"This is a third test, mistral AI is very good at testing. ",
],
transformer,
tokenizer,
max_tokens=max_tokens,
)
if should_print:
logging.debug("logprobs: %s", log_prob)
print("=====================")
if __name__ == "__main__":
fire.Fire(demo)