Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Power Stats \n",
"\n",
"Use RestAPI to read power consumption info for cluster nodes and generate usage reports. this is based on the [pandas time series tutorial by Jennifer Walker](https://www.dataquest.io/blog/tutorial-time-series-analysis-with-pandas/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import pprint\n",
"import datetime\n",
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.rcParams[\"figure.figsize\"] = (20,6)"
]
},
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up credentials to query RestAPI. Bright controls access based on the user identity. The user's cert.pem and cert.key are automatically generated but the cacert.pem needs to be constructed from the certs returned by the master."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert_file='~/.cm/cert.pem'\n",
"key_file='~/.cm/cert.key'\n",
"ca_file='cacert.pem'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert=(os.path.expanduser(cert_file), os.path.expanduser(key_file))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gather Cluster Power Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"startdate = '2020/01/01 00:00:00'\n",
"enddate = '2021/02/21 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = (\n",
" ('start', startdate),\n",
" ('measurable', 'Pwr_Consumption'),\n",
" ('indent', '1'),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = requests.get('https://master:8081/rest/v1/monitoring/dump', params=params, cert=cert, verify=False)"
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Simply read the json response into a dataframe for futher parsing."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(response.json()[\"data\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some of data values report unrealistic power values. Any reading over 10kW is considered invalid."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = df.loc[df['raw'] < 10000]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a datatime type column from the reported sample times."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df['datetime'] = pd.to_datetime(df.time, format=\"%Y/%m/%d %H:%M:%S\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create an index for the hourly "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_idx=pd.date_range(startdate, enddate, freq='H')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"debug=False\n",
"\n",
"# prepare data frame to append to, use zeros for default column \n",
"m6_hourly_pwr=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['sum'])\n",
"\n",
"for num, entity in enumerate(df.entity.unique()):\n",
" if entity not in ['c0108', 'c0009']:\n",
" node_pwr=df[df.entity==entity].set_index(\"datetime\")\n",
" node_pwr=node_pwr[['raw']].resample('H').mean()\n",
" node_pwr=node_pwr[startdate:enddate].fillna(method=\"ffill\")\n",
" if debug:\n",
" print(node_pwr)\n",
" missing = node_pwr['raw'].isnull().sum()\n",
" print(\"{}: {} missing {}\\n\".format(num, entity, missing))\n",
" m6_hourly_pwr[entity]= node_pwr[startdate:enddate]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot Per-node Hourly\n",
"\n",
"This is just to see the data for each node in one plot and get a feel for how the nodes behave relative to each other. There is too much data to decern individual behavior of specific nodes\n",
"but it does give a sense of how the total power adds up."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr['2020-02-01':'2020-07-09'].iloc[:,1:].plot(legend=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot Power Usage Graph\n",
"\n",
"\n",
"Pick the start and end date for the plots from the data range selected above. Generate the sum and plot only it's values.\n",
"\n",
"We skip over the first month of collection because it is uncommonly noisy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW = m6_hourly_pwr['2020-02-01':'2021-02-21'].sum(axis=1)/1000"
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = kW.plot()\n",
"ax.set_ylabel(\"Power (kW)\")\n",
"ax.set_title(\"Cheaha compute and login node hourly power use\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Resample hourly sum to support the seven day average."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW_d = kW.resample('D').mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the centered 7-day rolling mean\n",
"# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html\n",
"kW_7d = kW_d.rolling(7, center=True).mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot houry, daily, 7-day rolling mean\n",
"fig, ax = plt.subplots()\n",
"ax.plot(kW, marker='.', markersize=2, color='gray', linestyle='None', label='Hourly Average')\n",
"ax.plot(kW_d, color='brown', linewidth=2, label='1-day Average')\n",
"ax.plot(kW_7d, color='black', linewidth=4, label='7-day Rolling Average')\n",
"label='Trend (7 day Rolling Mean)'\n",
"ax.legend()\n",
"ax.set_ylabel('Power (kW)')\n",
"ax.set_title('Cheaha Trends in Electricity Consumption');"
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}