Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Power Stats \n",
"\n",
"Use RestAPI to read power consumption info for cluster nodes and generate usage reports. this is based on the [pandas time series tutorial by Jennifer Walker](https://www.dataquest.io/blog/tutorial-time-series-analysis-with-pandas/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import pprint\n",
"import datetime\n",
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# https://stackoverflow.com/a/9031848\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.rcParams[\"figure.figsize\"] = (20,6)"
]
},
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up credentials to query RestAPI. Bright controls access based on the user identity. The user's cert.pem and cert.key are automatically generated but the cacert.pem needs to be constructed from the certs returned by the master."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert_file='~/.cm/cert.pem'\n",
"key_file='~/.cm/cert.key'\n",
"ca_file='cacert.pem'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert=(os.path.expanduser(cert_file), os.path.expanduser(key_file))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gather Cluster Power Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"startdate = '2021/01/01 00:00:00'\n",
"enddate = '2021/04/8 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"displaystart = '2021-02-01'\n",
"displaystop = '2021-04-08'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = (\n",
" ('start', startdate),\n",
" ('measurable', 'Pwr_Consumption'),\n",
" ('indent', '1'),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if os.path.exists(\"ipower_data.csv\"):\n",
" df = pd.read_csv(\"power_data.csv\")\n",
"else:\n",
" response = requests.get('https://master:8081/rest/v1/monitoring/dump', params=params, cert=cert, verify=False)\n",
" df = pd.DataFrame(response.json()[\"data\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Simply read the json response into a dataframe for futher parsing."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
John-Paul Robinson
committed
"## Clean Data and Resample\n",
"\n",
"Some of data values report unrealistic power values. Any reading over 10kW is considered invalid. \n",
"\n",
"Shouldn't do that until later since it implicitly filters out NaN"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
John-Paul Robinson
committed
"#df = df.loc[df['raw'] < 10000]"
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a datatime type column from the reported sample times."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df['datetime'] = pd.to_datetime(df.time, format=\"%Y/%m/%d %H:%M:%S\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create an index for the hourly "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_idx=pd.date_range(startdate, enddate, freq='H')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"debug=False\n",
"\n",
"# prepare data frame to append to, use zeros for default column \n",
"m6_hourly_pwr=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['sum'])\n",
"\n",
John-Paul Robinson
committed
"for num, entity in enumerate(sorted(df.entity.unique())):\n",
" if entity not in ['c0009']:\n",
" node_pwr=df[df.entity==entity].set_index(\"datetime\")\n",
" node_pwr=node_pwr[['raw']].resample('H').mean()\n",
" node_pwr=node_pwr[startdate:enddate].fillna(method=\"ffill\")\n",
John-Paul Robinson
committed
" node_pwr=node_pwr[startdate:enddate].fillna(method=\"bfill\")\n",
" if debug:\n",
" print(node_pwr)\n",
" missing = node_pwr['raw'].isnull().sum()\n",
" print(\"{}: {} missing {}\\n\".format(num, entity, missing))\n",
" m6_hourly_pwr[entity]= node_pwr[startdate:enddate]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot Per-node Hourly for Row 5 Rack 1\n",
"\n",
John-Paul Robinson
committed
"This is just to see the data for each node in one plot and get a feel for how the nodes behave relative to each other. Plot nodes in individual subplotes to decern individual behavior of specific nodes. It does give a sense of how the total power adds up. \n",
"\n",
"Inspect the nodes in the first rack.\n",
"\n",
"Plot help on [shared x-axis](https://stackoverflow.com/a/37738851)\n",
"on [correct pandas legend use](https://stackoverflow.com/a/59797261)\n",
"and [subplot legend placement](https://stackoverflow.com/a/27017307)"
John-Paul Robinson
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_nodes=36\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,30))\n",
John-Paul Robinson
committed
"for i in range(num_nodes):\n",
" m6_hourly_pwr[displaystart:displaystop].iloc[:,i+1:i+2].plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')"
John-Paul Robinson
committed
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Overview plot reveals missing power data for a number of nodes. Inspect one up close."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"select_node=\"c0022\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df.entity==select_node].set_index(\"datetime\")[\"2020-09-01\":\"2020-10-04\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4][\"2020-10-03\":\"2020-10-04\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4][\"2020-09-28\":\"2020-10-14\"].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==\"c0001\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==\"c0001\"][\"datetime\"].max()"
John-Paul Robinson
committed
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Identify nodes that have missing data\n",
"\n",
"Identify nodes by ones that have NaN values over the past month."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nan_mask = m6_hourly_pwr[\"2021-03-22\":\"2021-03-23\"].isna()"
John-Paul Robinson
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"power_missing = nan_mask[nan_mask].apply(lambda row: row[row == True].index, axis=1)[1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(*power_missing,sep=\", \")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
John-Paul Robinson
committed
"num_nodes=len(power_missing)\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,30))\n",
John-Paul Robinson
committed
"for i, node in enumerate(power_missing):\n",
" m6_hourly_pwr[node].plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')"
]
},
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==node][\"datetime\"].max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lastreport = pd.DataFrame(columns=('node', 'datetime'))\n",
"\n",
"for i, node in enumerate(power_missing):\n",
" lastreport.loc[i] = [node, df[df[\"entity\"]==node][\"datetime\"].max()]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lastreport.sort_values(by=\"datetime\") #[\"datetime\"].sort()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"{}:\\t{}\".format(node, df[df[\"entity\"]==node][\"datetime\"].max()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot all nodes power\n",
"\n",
"Create overview plot of all nodes to observe meta-patterns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_nodes=len(m6_hourly_pwr.iloc[:,1:].columns)\n",
"\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,num_nodes))\n",
"for i, node in enumerate(m6_hourly_pwr.iloc[:,1:].columns):\n",
" if (i == num_nodes):\n",
" break\n",
" m6_hourly_pwr[node][displaystart:displaystop].plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot Power Usage Graph\n",
"\n",
"\n",
"Pick the start and end date for the plots from the data range selected above. Generate the sum and plot only it's values.\n",
"\n",
"We skip over the first month of collection because it is uncommonly noisy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW = m6_hourly_pwr[displaystart:displaystop].sum(axis=1)/1000"
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = kW.plot()\n",
"ax.set_ylabel(\"Power (kW)\")\n",
"ax.set_title(\"Cheaha compute and login node hourly power use\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Resample hourly sum to support the seven day average."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW_d = kW.resample('D').mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the centered 7-day rolling mean\n",
"# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html\n",
"kW_7d = kW_d.rolling(7, center=True).mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot houry, daily, 7-day rolling mean\n",
"fig, ax = plt.subplots()\n",
"ax.plot(kW, marker='.', markersize=2, color='gray', linestyle='None', label='Hourly Average')\n",
"ax.plot(kW_d, color='brown', linewidth=2, label='1-day Average')\n",
"ax.plot(kW_7d, color='black', linewidth=4, label='7-day Rolling Average')\n",
"label='Trend (7 day Rolling Mean)'\n",
"ax.legend()\n",
"ax.set_ylabel('Power (kW)')\n",
"ax.set_title('Cheaha Trends in Electricity Consumption');"
]
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Save Hourly Power to Dataframe\n",
"\n",
"This makes it easy to use the data in other analysis and learning efforts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr.to_pickle(\"m6_hourly_pwr.gz\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.to_pickle(\"power_stats_raw_df.gz\")"
]