Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Explore Cluster Power Stats \n",
"\n",
"Use rest api for now to avoid RPC issues with python client library.\n",
"\n",
"Convert a curl command for currnet power to rest query\n",
"https://curl.trillworks.com/\n",
"\n",
"This is the curl command that confirms authenticated access to Bright's CMDaeamon. It was derived from the [RestAPI intro in the Bright Developer Manual](https://support.brightcomputing.com/manuals/8.2/developer-manual.pdf).\n",
"\n",
"```\n",
"curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key --cacert pythoncm/etc/cacert.pem \\\n",
" \"https://master:8081/rest/v1/monitoring/latest?measurable=Pwr_Consumption&indent=1\"\n",
"```\n",
"\n",
"Getting the total instantaneous power used from all nodes monitored by cmd. The sum on the deals with weird outlier data from one of the nods:\n",
"\n",
"```\n",
"curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key --cacert pythoncm/etc/cacert.pem \\\n",
" \"https://master:8081/rest/v1/monitoring/latest?measurable=Pwr_Consumption&indent=1\" | \\\n",
" jq '.data[] | select(.raw < 10000) .raw' | \\\n",
" awk '{sum=$1+sum} END {print sum}'\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import pprint\n",
"import datetime\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pp = pprint.PrettyPrinter(indent=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up credentials to query RestAPI. Bright controls access based on the user identity. The user's cert.pem and cert.key are automatically generated but the cacert.pem needs to be constructed from the certs returned by the master."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert_file='/home/jpr/.cm/cert.pem'\n",
"key_file='/home/jpr/.cm/cert.key'\n",
"ca_file='/home/jpr/projects/power-study/pythoncm/etc/cacert.pem'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = (\n",
" ('measurable', 'Pwr_Consumption'),\n",
" ('indent', '1'),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert=(cert_file, key_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# define the client certs with the cert line, note the order is (cert, key)\n",
"# https://requests.readthedocs.io/en/master/user/advanced/#client-side-certificates\n",
"#\n",
"# define the verify bundle via verify, note False means do not verify\n",
"# https://stackoverflow.com/a/48636689/8928529\n",
"response = requests.get('https://master:8081/rest/v1/monitoring/latest', params=params, cert=cert, verify=False)"
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Manually construct a pthyon datastructure hash of nodes and tuples of power sample."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"debug=False\n",
"power=0.0\n",
"count=0\n",
"for num, doc in enumerate(response.json()[\"data\"]):\n",
" if doc[\"age\"] < 1000:\n",
" if debug: print(\"{}: {}\\n\".format(num, pp.pprint(doc)))\n",
" if doc[\"value\"] != \"no data\":\n",
" power=power + float(doc[\"raw\"])\n",
" count+=1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"power"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"power/count"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"count"
]
},
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the time is in milleseconds so the unix converstion needs to drop the last three digits."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get power use history\n",
"\n",
"From beginning of july for starters. Based on the blog https://www.dataquest.io/blog/tutorial-time-series-analysis-with-pandas/."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = (\n",
" ('start', '2020/01/01 00:00'),\n",
" #('entity', 'c0109'),\n",
" ('measurable', 'Pwr_Consumption'),\n",
" ('indent', '1'),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = requests.get('https://master:8081/rest/v1/monitoring/dump', params=params, cert=cert, verify=False)"
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"response.json()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It's easy to [convert a list of dictionaries to a pandas data frame](https://pbpython.com/pandas-list-dict.html). This conversion path is the default for the pandas DataFrame constructor and serves our currnt needs well. We can create data frame from the power dump response and easily enhance the data to serve our plotting needs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(response.json()[\"data\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df "
]
},
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{
"cell_type": "markdown",
"metadata": {},
"source": [
"convert result date to unix time stamp for easier plotting and time comparison."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```entity \tmeasurable \traw \ttime \tvalue \tdatetime \tutime\n",
"428473 \tc0063 \tPwr_Consumption \t742849.191667 \t2020/05/17 23:22:00 \t742KW \t2020-05-17 23:22:00 \t1589757720\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# remove problematic entries, like unrealistic data points. Nodes can't consume 100's kW, like c0063 on 2020/05/17\n",
"# https://www.interviewqs.com/ddi_code_snippets/rows_cols_python\n",
"df.loc[df['raw'] > 100000]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = df.loc[df['raw'] < 100000]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# improve performace by providing format string to avoid per-entry parsing deduction\n",
"\n",
"df['datetime'] = pd.to_datetime(df.time, format=\"%Y/%m/%d %H:%M:%S\")"
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initial Data Viz with Seaborn Plots"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add column with datetime converted to unix time (in seconds) \n",
"# to preserve spacial relationships on the axis\n",
"# note: the original data has no time zone so our reference time stamp needs to be timezone free\n",
"df['utime'] = (df['datetime'] - pd.Timestamp(\"1970-01-01T00:00:00.000\")) // pd.Timedelta('1s') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our default utility function to fix labels on the x-axis of time series seaborn plots"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def timeticks(ax, tformat=\"%H:%M:%S\\n%Y-%m-%d\"):\n",
" xticks = ax.get_xticks()\n",
" xticks_dates = [datetime.datetime.fromtimestamp(x).strftime(tformat) for x in xticks]\n",
" hush = ax.set_xticklabels(xticks_dates)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot each data point for power used. Observe that this plot does not aggregate power use across nodes. It simply plots power used at all available time plots.\n",
"\n",
"Also note the time outliers. We requested data since July 1, 2020 but the results include information from 2018."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# build the replot and capture the handle\n",
"g = sns.relplot(x=\"utime\", y=\"raw\",\n",
" palette=\"bright\",\n",
" #height=5,\n",
" aspect=2,\n",
" data=df,\n",
" s=100)\n",
"# update the axis labels\n",
"g = (g.set_axis_labels(\"Date\", \"Power (Watts)\"))\n",
"# update the x tickmarks from unix time to hour minute seconds\n",
"ax = g.axes\n",
"ax = ax[0,0]\n",
"timeticks(ax)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore Resampling to Hourly Sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are more interested in a plot of total power used over time.\n",
"\n",
"We can [resample a data frame on a time interval](https://stackoverflow.com/a/52057318/8928529), which is our interest at this point. In particular we would find it interesting to see the hourly total (sum) of the raw power used across the cluster."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly = df.resample('H', on='datetime').size().reset_index(name='sum')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly[\"sum\"].plot()"
]
},
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is isn't quite the sum we wanted to add up.\n",
"\n",
"Understand how setting the datatime index moves it out of the column collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily = df.set_index('datetime')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily['hourly'] = daily.index.hour"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The date indexing by setting the datetime index is helpful."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use seaborn style defaults and set the default figure size\n",
"sns.set(rc={'figure.figsize':(11, 4)})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily['raw'].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"axes = daily['raw'].plot(marker='.', alpha=0.5, linestyle='None', figsize=(11, 4), subplots=True)\n",
"for ax in axes:\n",
" ax.set_ylabel('Usage (Watts)')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.loc['2020-9', 'raw'].plot(marker='.', alpha=0.5, linestyle='None')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.loc['2020-10-14', 'raw'].plot(marker='.', alpha=0.5, linestyle='None')"
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.loc['2020-06-15', 'raw'].plot(marker='.', alpha=0.5, linestyle='None')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily.loc['2020-06-16', 'raw'].plot(marker='.', alpha=0.5, linestyle='None')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly = daily['raw'].resample('H').sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly.plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"daily['raw'].resample('H').mean().plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These plots are interesting but don't seem to capture the data accurately.\n",
"\n",
"It seems more appopriate to work with each inidividual node and structure its values into a standard bin arrangement."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explore performance of an individual node."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node = node.set_index(\"datetime\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A series of plots for the single node shows times when the node was computing vs when not. Notice the saw tooth graph after the high load events."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node['raw'].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node['raw'].plot(marker='.', alpha=0.5, linestyle='None')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice the dip in power use right at the the interesting time point."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node.loc['2020-01-15':'2021-2-16', 'raw'].plot(marker='o', linestyle='-')"
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly=pd.date_range('2020-05-01', 'now', freq='H')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly=node[['raw']].resample('H').mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly['raw'].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Understand summing over the nodes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly['raw'].isNull()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_idx=pd.date_range('2020-05-01', '2020-07-09', freq='H')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(hourly_idx)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.zeros((1,10)).T"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['raw'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr.index"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get first or last entry from index. https://stackoverflow.com/a/31269098/8928529\n",
"\n",
"It was easier to append columns to the data frame than to try an add them in a loop.\n",
"Do the addition after the columns are built."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['raw'])\n",
"\n",
"for num, entity in enumerate(df.entity.unique()):\n",
" if entity not in ['c0108', 'c0009']:\n",
" node_pwr=df[df.entity==entity].set_index(\"datetime\")\n",
" node_pwr=node_pwr[['raw']].resample('H').mean()\n",
" node_pwr=node_pwr['2020-05-01':'2020-07-09'].fillna(method=\"ffill\")\n",
" print(node_pwr)\n",
" missing = node_pwr['raw'].isnull().sum()\n",
" print(\"{}: {} missing {}\\n\".format(num, entity, missing))\n",
" if num < 149:\n",
" #hourly_pwr.add(node_pwr['2020-05-01':'2020-07-09'], ['raw'])#, axis='columns', fill_value=0.0)\n",
" #hourly_pwr+=node_pwr['2020-05-01':'2020-07-09']\n",
" # its easier to add columns and do the sum later\n",
" # https://www.geeksforgeeks.org/adding-new-column-to-existing-dataframe-in-pandas/\n",
" hourly_pwr[entity]= node_pwr['2020-05-01':'2020-07-09']\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr.sum(axis=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_pwr.sum(axis=1).plot()"
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}