Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Power Stats \n",
"\n",
"Use RestAPI to read power consumption info for cluster nodes and generate usage reports. this is based on the [pandas time series tutorial by Jennifer Walker](https://www.dataquest.io/blog/tutorial-time-series-analysis-with-pandas/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import pprint\n",
"import datetime\n",
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# https://stackoverflow.com/a/9031848\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.rcParams[\"figure.figsize\"] = (20,6)"
]
},
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up credentials to query RestAPI. Bright controls access based on the user identity. The user's cert.pem and cert.key are automatically generated but the cacert.pem needs to be constructed from the certs returned by the master."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert_file='~/.cm/cert.pem'\n",
"key_file='~/.cm/cert.key'\n",
"ca_file='cacert.pem'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cert=(os.path.expanduser(cert_file), os.path.expanduser(key_file))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gather Cluster Power Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"startdate = '2021/06/01 00:00:00'\n",
"enddate = '2021/10/20 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"displaystart = '2021-06-01'\n",
"displaystop = '2021-10-20'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = (\n",
" ('start', startdate),\n",
" ('measurable', 'Pwr_Consumption'),\n",
" ('indent', '1'),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if os.path.exists(\"ipower_data.csv\"):\n",
" df = pd.read_csv(\"power_data.csv\")\n",
"else:\n",
" response = requests.get('https://master:8081/rest/v1/monitoring/dump', params=params, cert=cert, verify=False)\n",
" df = pd.DataFrame(response.json()[\"data\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Simply read the json response into a dataframe for futher parsing."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
John-Paul Robinson
committed
"## Clean Data and Resample\n",
"\n",
"Some of data values report unrealistic power values. Any reading over 10kW is considered invalid. \n",
"\n",
"Shouldn't do that until later since it implicitly filters out NaN"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
John-Paul Robinson
committed
"#df = df.loc[df['raw'] < 10000]"
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a datatime type column from the reported sample times."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df['datetime'] = pd.to_datetime(df.time, format=\"%Y/%m/%d %H:%M:%S\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create an index for the hourly "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_idx=pd.date_range(startdate, enddate, freq='H')"
]
},
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hourly_idx"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"demodf=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['sum'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"demodf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.entity"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sorted(df.entity.unique())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"debug=False\n",
"\n",
"# prepare data frame to append to, use zeros for default column \n",
"m6_hourly_pwr=pd.DataFrame(np.zeros((1,len(hourly_idx))).T, index=hourly_idx, columns=['sum'])\n",
"\n",
John-Paul Robinson
committed
"for num, entity in enumerate(sorted(df.entity.unique())):\n",
" if entity not in ['c0009']:\n",
" node_pwr=df[df.entity==entity].set_index(\"datetime\")\n",
" node_pwr=node_pwr[['raw']].resample('H').mean()\n",
" node_pwr=node_pwr[startdate:enddate].fillna(method=\"ffill\")\n",
John-Paul Robinson
committed
" node_pwr=node_pwr[startdate:enddate].fillna(method=\"bfill\")\n",
" if debug:\n",
" print(node_pwr)\n",
" missing = node_pwr['raw'].isnull().sum()\n",
" print(\"{}: {} missing {}\\n\".format(num, entity, missing))\n",
" m6_hourly_pwr[entity]= node_pwr[startdate:enddate]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr.fillna(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot Per-node Hourly for Row 5 Rack 1\n",
"\n",
John-Paul Robinson
committed
"This is just to see the data for each node in one plot and get a feel for how the nodes behave relative to each other. Plot nodes in individual subplotes to decern individual behavior of specific nodes. It does give a sense of how the total power adds up. \n",
"\n",
"Inspect the nodes in the first rack.\n",
"\n",
"Plot help on [shared x-axis](https://stackoverflow.com/a/37738851)\n",
"on [correct pandas legend use](https://stackoverflow.com/a/59797261)\n",
"and [subplot legend placement](https://stackoverflow.com/a/27017307)"
John-Paul Robinson
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"dftest=m6_hourly_pwr[displaystart:displaystop].fillna(0).iloc[:,1:2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"type(dftest)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(np.__version__)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!module "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dftest.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"startnode=35\n",
"stopnode=71\n",
"num_nodes=stopnode-startnode\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,30))\n",
"for i in range(startnode, startnode+1):\n",
" print(i)\n",
" dftmp=m6_hourly_pwr[displaystart:displaystop].fillna(0).iloc[:,i+1:i+2]\n",
" dftmp.plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')"
John-Paul Robinson
committed
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Overview plot reveals missing power data for a number of nodes. Inspect one up close."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"select_node=\"c0022\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df.entity==select_node].set_index(\"datetime\")[\"2020-09-01\":\"2020-10-04\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4][\"2020-10-03\":\"2020-10-04\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4][\"2020-09-28\":\"2020-10-14\"].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr[displaystart:displaystop].iloc[:,3:4].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==\"c0001\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==\"c0001\"][\"datetime\"].max()"
John-Paul Robinson
committed
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Identify nodes that have missing data\n",
"\n",
"Identify nodes by ones that have NaN values over the past month."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nan_mask = m6_hourly_pwr[startdate:enddate].isna()"
John-Paul Robinson
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"power_missing = nan_mask[nan_mask].apply(lambda row: row[row == True].index, axis=1)[1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(*power_missing,sep=\", \")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
John-Paul Robinson
committed
"num_nodes=len(power_missing)\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,30))\n",
John-Paul Robinson
committed
"for i, node in enumerate(power_missing):\n",
" m6_hourly_pwr[node].plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')"
]
},
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"node"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[df[\"entity\"]==node][\"datetime\"].max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lastreport = pd.DataFrame(columns=('node', 'datetime'))\n",
"\n",
"for i, node in enumerate(power_missing):\n",
" lastreport.loc[i] = [node, df[df[\"entity\"]==node][\"datetime\"].max()]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lastreport.sort_values(by=\"datetime\") #[\"datetime\"].sort()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"{}:\\t{}\".format(node, df[df[\"entity\"]==node][\"datetime\"].max()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot all nodes power\n",
"\n",
"Create overview plot of all nodes to observe meta-patterns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_nodes=len(m6_hourly_pwr.iloc[:,1:].columns)\n",
"\n",
"fig, axes = plt.subplots(num_nodes,1, sharex=True, figsize=(20,num_nodes))\n",
"for i, node in enumerate(m6_hourly_pwr.iloc[:,1:].columns):\n",
" if (i == num_nodes):\n",
" break\n",
" m6_hourly_pwr[node][displaystart:displaystop].plot(ax=axes[i], legend=True)\n",
" axes[i].legend(loc='lower left')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr.iloc[:,133:199].columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot Power Usage Graph\n",
"\n",
"\n",
"Pick the start and end date for the plots from the data range selected above. Generate the sum and plot only it's values.\n",
"\n",
"We skip over the first month of collection because it is uncommonly noisy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW = m6_hourly_pwr.iloc[:,133:199][displaystart:displaystop].sum(axis=1)/1000"
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = kW.plot()\n",
"ax.set_ylabel(\"Power (kW)\")\n",
"ax.set_title(\"Cheaha compute and login node hourly power use\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Resample hourly sum to support the seven day average."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"kW_d = kW.resample('D').mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the centered 7-day rolling mean\n",
"# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html\n",
"kW_7d = kW_d.rolling(7, center=True).mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot houry, daily, 7-day rolling mean\n",
"fig, ax = plt.subplots()\n",
"ax.plot(kW, marker='.', markersize=2, color='gray', linestyle='None', label='Hourly Average')\n",
"ax.plot(kW_d, color='brown', linewidth=2, label='1-day Average')\n",
"ax.plot(kW_7d, color='black', linewidth=4, label='7-day Rolling Average')\n",
"label='Trend (7 day Rolling Mean)'\n",
"ax.legend()\n",
"ax.set_ylabel('Power (kW)')\n",
"ax.set_title('Cheaha Trends in Electricity Consumption');"
]
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Save Hourly Power to Dataframe\n",
"\n",
"This makes it easy to use the data in other analysis and learning efforts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6_hourly_pwr.to_pickle(\"m6_hourly_pwr.gz\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.to_pickle(\"power_stats_raw_df.gz\")"
]