Skip to content
Snippets Groups Projects
input.md 25.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
# AlphaFold 3 Input

## Specifying Input Files

You can provide inputs to `run_alphafold.py` in one of two ways:

-   Single input file: Use the `--json_path` flag followed by the path to a
    single JSON file.
-   Multiple input files: Use the `--input_dir` flag followed by the path to a
    directory of JSON files.

## Input Format

AlphaFold 3 uses a custom JSON input format differing from the
[AlphaFold Server JSON input format](https://github.com/google-deepmind/alphafold/tree/main/server).
See [below](#alphafold-server-json-compatibility) for more information.

The custom AlphaFold 3 format allows:

*   Specifying protein, RNA, and DNA chains, including modified residues.
*   Specifying custom multiple sequence alignment (MSA) for protein and RNA
    chains.
*   Specifying custom structural templates for protein chains.
*   Specifying ligands using
    [Chemical Component Dictionary (CCD)](https://www.wwpdb.org/data/ccd) codes.
*   Specifying ligands using SMILES.
*   Specifying ligands by defining them using the CCD mmCIF format and supplying
    them via the [user-provided CCD](#user-provided-ccd).
*   Specifying covalent bonds between entities.
*   Specifying multiple random seeds.

## AlphaFold Server JSON Compatibility

The [AlphaFold Server](https://alphafoldserver.com/) uses a separate
[JSON format](https://github.com/google-deepmind/alphafold/tree/main/server)
from the one used here in the AlphaFold 3 codebase. In particular, the JSON
format used in the AlphaFold 3 codebase offers more flexibility and control in
defining custom ligands, branched glycans, and covalent bonds between entities.

We provide a converter in `run_alphafold.py` which automatically detects the
input JSON format, denoted `dialect` in the converter code. The converter
denotes the AlphaFoldServer JSON as `alphafoldserver`, and the JSON format
defined here in the AlphaFold 3 codebase as `alphafold3`. If the detected input
JSON format is `alphafoldserver`, then the converter will translate that into
the JSON format `alphafold3`.

### Multiple Inputs

The top-level of the `alphafoldserver` JSON format is a list, allowing
specification of multiple inputs in a single JSON. In contrast, the `alphafold3`
JSON format requires exactly one input per JSON file. Specifying multiple inputs
in a single `alphafoldserver` JSON is fully supported.

Note that the converter distinguishes between `alphafoldserver` and `alphafold3`
JSON formats by checking if the top-level of the JSON is a list or not. In
particular, if you pass in a `alphafoldserver`-style JSON without a top-level
list, then this is considered incorrect and `run_alphafold.py` will raise an
error.

### Glycans

If the JSON in `alphafoldserver` format specifies glycans, the converter will
raise an error. This is because translating glycans specified in the
`alphafoldserver` format to the `alphafold3` format is not currently supported.

### Random Seeds

The `alphafoldserver` JSON format allows users to specify `"modelSeeds": []`, in
which case a seed is chosen randomly for the user. On the other hand, the
`alphafold3` format requires users to specify a seed.

The converter will choose a seed randomly if `"modelSeeds": []` is set when
translating from `alphafoldserver` JSON format to `alphafold3` JSON format. If
seeds are specified in the `alphafoldserver` JSON format, then those will be
preserved in the translation to the `alphafold3` JSON format.

### Ions

While AlphaFold Server treats ions and ligands as different entity types in the
JSON format, AlphaFold 3 treats ions as ligands. Therefore, to specify e.g. a
magnesium ion, one would specify it as an entity of type `ligand` with
`ccdCodes: ["MG"]`.

### Sequence IDs

The `alphafold3` JSON format requires the user to specify a unique identifier
(`id`) for each entity. On the other hand, the `alphafoldserver` does not allow
specification of an `id` for each entity. Thus, the converter automatically
assigns one.

The converter iterates through the list provided in the `sequences` field of the
`alphafoldserver` JSON format, assigning an `id` to each entity using the
following order ("reverse spreadsheet style"):

```
A, B, ..., Z, AA, BA, CA, ..., ZA, AB, BB, CB, ..., ZB, ...
```

For any entity with `count > 1`, an `id` is assigned arbitrarily to each "copy"
of the entity.

## Top-level Structure

The top-level structure of the input JSON is:

```json
{
  "name": "Job name goes here",
  "modelSeeds": [1, 2],  # At least one seed required.
  "sequences": [
    {"protein": {...}},
    {"rna": {...}},
    {"dna": {...}},
    {"ligand": {...}}
  ],
  "bondedAtomPairs": [...],  # Optional
  "userCCD": "...",  # Optional
  "dialect": "alphafold3",  # Required
  "version": 1  # Required
}
```

The fields specify the following:

*   `name: str`: The name of the job. A sanitised version of this name is used
    for naming the output files.
*   `modelSeeds: list[int]`: A list of integer random seeds. The pipeline and
    the model will be invoked with each of the seeds in the list. I.e. if you
    provide *n* random seeds, you will get *n* predicted structures, each with
    the respective random seed. You must provide at least one random seed.
*   `sequences: list[Protein | RNA | DNA | Ligand]`: A list of sequence
    dictionaries, each defining a molecular entity, see below.
*   `bondedAtomPairs: list[Bond]`: An optional list of covalently bonded atoms.
    These can link atoms within an entity, or across two entities. See more
    below.
*   `userCCD: str`: An optional string with user-provided chemical components
    dictionary. This is an expert mode for providing custom molecules when
    SMILES is not sufficient. This should also be used when you have a custom
    molecule that needs to be bonded with other entities - SMILES can't be used
    in such cases since it doesn't give the possibility of uniquely naming all
    atoms. It can also be used to provide a reference conformer for cases where
    RDKit fails to generate a conformer. See more below.
*   `dialect: str`: The dialect of the input JSON. This must be set to
    `alphafold3`. See
    [AlphaFold Server JSON Compatibility](#alphafold-server-json-compatibility)
    for more information.
*   `version: int`: The version of the input JSON. This must be set to 1. See
    [AlphaFold Server JSON Compatibility](#alphafold-server-json-compatibility)
    for more information.

## Sequences

The `sequences` section specifies the protein chains, RNA chains, DNA chains,
and ligands. Every entity in `sequences` must have a unique ID. IDs don't have
to be sorted alphabetically.

### Protein

Specifies a single protein chain.

```json
{
  "protein": {
    "id": "A",
    "sequence": "PVLSCGEWQL",
    "modifications": [
      {"ptmType": "HY3", "ptmPosition": 1},
      {"ptmType": "P1L", "ptmPosition": 5}
    ],
    "unpairedMsa": ...,
    "pairedMsa": ...,
    "templates": [...]
  }
}
```

The fields specify the following:

*   `id: str | list[str]`: An uppercase letter or multiple letters specifying
    the unique IDs for each copy of this protein chain. The IDs are then also
    used in the output mmCIF file. Specifying a list of IDs (e.g. `["A", "B",
    "C"]`) implies a homomeric chain with multiple copies.
*   `sequence: str`: The amino-acid sequence, specified as a string that uses
    the 1-letter standard amino acid codes.
*   `modifications: list[ProteinModification]`: An optional list of
    post-translational modifications. Each modification is specified using its
    CCD code and 1-based residue position. In the example above, we see that the
    first residue won't be a proline (`P`) but instead `HY3`.
*   `unpairedMsa: str`: An optional multiple sequence alignment for this chain.
    This is specified using the A3M format (equivalent to the FASTA format, but
    also allows gaps denoted by the hyphen `-` character). See more details
    below.
*   `pairedMsa: str`: We recommend *not* using this optional field and using the
    `unpairedMsa` for the purposes of pairing. See more details below.
*   `templates: list[Template]`: An optional list of structural templates. See
    more details below.

### RNA

Specifies a single RNA chain.

```json
{
  "rna": {
    "id": "A",
    "sequence": "AGCU",
    "modifications": [
      {"modificationType": "2MG", "basePosition": 1},
      {"modificationType": "5MC", "basePosition": 4}
    ],
    "unpairedMsa": ...
  }
}
```

The fields specify the following:

*   `id: str | list[str]`: An uppercase letter or multiple letters specifying
    the unique IDs for each copy of this RNA chain. The IDs are then also used
    in the output mmCIF file. Specifying a list of IDs (e.g. `["A", "B", "C"]`)
    implies a homomeric chain with multiple copies.
*   `sequence: str`: The RNA sequence, specified as a string using only the
    letters `A`, `C`, `G`, `U`.
*   `modifications: list[RnaModification]`: An optional list of modifications.
    Each modification is specified using its CCD code and 1-based base position.
*   `unpairedMsa: str`: An optional multiple sequence alignment for this chain.
    This is specified using the A3M format. See more details below.

### DNA

Specifies a single DNA chain.

```json
{
  "dna": {
    "id": "A",
    "sequence": "GACCTCT",
    "modifications": [
      {"modificationType": "6OG", "basePosition": 1},
      {"modificationType": "6MA", "basePosition": 2}
    ]
  }
}
```

The fields specify the following:

*   `id: str | list[str]`: An uppercase letter or multiple letters specifying
    the unique IDs for each copy of this DNA chain. The IDs are then also used
    in the output mmCIF file. Specifying a list of IDs (e.g. `["A", "B", "C"]`)
    implies a homomeric chain with multiple copies.
*   `sequence: str`: The DNA sequence, specified as a string using only the
    letters `A`, `C`, `G`, `T`.
*   `modifications: list[DnaModification]`: An optional list of modifications.
    Each modification is specified using its CCD code and 1-based base position.

### Ligands

Specifies a single ligand. Ligands can be specified using 3 different formats:

1.  [CCD code(s)](https://www.wwpdb.org/data/ccd). This is the easiest way to
    specify ligands. Supports specifying covalent bonds to other entities. CCD
    from 2022-09-28 is used. If multiple CCD codes are specified, you may want
    to specify a bond between these and/or a bond to some other entity. See the
    [bonds](#bonds) section below.
2.  [SMILES string](https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System).
    This enables specifying ligands that are not in CCD. If using SMILES, you
    cannot specify covalent bonds to other entities as these rely on specific
    atom names - see the next option for what to use for this case.
3.  User-provided CCD + custom ligand codes. This enables specifying ligands not
    in CCD, while also supporting specification of covalent bonds to other
    entities and backup reference coordinates for when RDKit fails to generate a
    conformer. This offers the most flexibility, but also requires careful
    attention to get all of the details right.

```json
{
  "ligand": {
    "id": ["G", "H", "I"],
    "ccdCodes": ["ATP"]
  }
},
{
  "ligand": {
    "id": "J",
    "ccdCodes": ["LIG-1337"]
  }
},
{
  "ligand": {
    "id": "K",
    "smiles": "CC(=O)OC1C[NH+]2CCC1CC2"
  }
}
```

The fields specify the following:

*   `id: str | list[str]`: An uppercase letter (or multiple letters) specifying
    the unique ID of this ligand. This ID is then also used in the output mmCIF
    file. Specifying a list of IDs (e.g. `["A", "B", "C"]`) implies a ligand
    that has multiple copies.
*   `ccdCodes: list[str]`: An optional list of CCD codes. These could be either
    standard CCD codes, or custom codes pointing to the
    [user-provided CCD](#user-provided-ccd).
*   `smiles: str`: An optional string defining the ligand using a SMILES string.

Each ligand may be specified using CCD codes or SMILES but not both, i.e. for a
given ligand, the `ccdCodes` and `smiles` fields are mutually exclusive.

### Ions

Ions are treated as ligands, e.g. a magnesium ion would simply be a ligand with
`ccdCodes: ["MG"]`.

## Multiple Sequence Alignment

Protein and RNA chains allow setting a custom Multiple Sequence Alignment (MSA).
If not set, the data pipeline will automatically build MSAs for protein and RNA
entities using Jackhmmer/Nhmmer search over genetic databases as described in
the paper.

There are 3 modes for MSA:

1.  If the `unpairedMsa` field is unset, AlphaFold 3 will build the MSA
    automatically. This is the recommended option.
2.  If the `unpairedMsa` field is set to an empty string (`""`), AlphaFold 3
    will not build the MSA and the MSA input to the model will be empty.
3.  If the `unpairedMsa` field is set to a custom A3M string, AlphaFold 3 will
    use the provided MSA instead of building one as part of the data pipeline.
    This is considered an expert option.

Note that if you set the `unpairedMsa` field for a particular protein entity,
you will also have to explicitly set the `pairedMsa` field (typically to empty
string) and templates (either to a list of templates, or an empty list to run
template-free). For example this will run the protein chain A with the given
MSA, but without any templates:

```json
{
  "protein": {
    "id": "A",
    "sequence": ...,
    "unpairedMsa": "The A3M you want to run with",
    "pairedMsa": "",
    "templates": []
  }
}
```

When setting your own MSA, you have to make sure that:

1.  The MSA is a valid A3M file. This means adhering to the FASTA format while
    also allowing lowercase characters denoting inserted residues and hyphens
    (`-`) denoting gaps in sequences.
2.  The first sequence is exactly equal to the query sequence.
3.  If all insertions are removed from MSA hits (i.e. all lowercase letters are
    removed), all sequences have exactly the same length as the query (they form
    an exact rectangular matrix).

### MSA Pairing

MSA pairing matters only when folding multiple chains (multimers), since we need
to find a way to concatenate MSAs for the individual chains along the sequence
dimension. If done naively, by simply concatenating the individual MSA matrices
along the sequence dimension and padding so that all MSAs have the same depth,
one can end up with rows in the concatenated MSA that are formed by sequences
from different organisms.

It may be desirable to ensure that across multiple chains, sequences in the MSA
that are from the same organism end up in the same MSA row. AlphaFold 3
internally achieves this by looking for the UniProt organism ID in the
`pairedMsa` and pairing sequences based on this information.

We recommend users do the pairing manually or use the output of an appropriate
software and then provide the MSA using only the `unpairedMsa` field. This
method gives exact control over the placement of each sequence in the MSA, as
opposed to relying on name-matching post-processing heuristics used for
`pairedMsa`.

When setting `unpairedMsa` manually, the `pairedMsa` must be left unset (i.e.
the `pairedMsa` key should not be present in the JSON).

For instance, if there are two chains `DEEP` and `MIND` which we want to be
paired on organism A and C, we can achieve it as follows:

```text
> query
DEEP
> match 1 (organism A)
D--P
> match 2 (organism B)
DD-P
> match 3 (organism C)
DD-P
```

```text
> query
MIND
> match 1 (organism A)
M--D
> Empty hit to make sure pairing is achieved
----
> match 2 (organism C)
MIN-
```

The resulting MSA when chains are concatenated will then be:

```text
> query
DEEPMIND
> match 1 + match 1
D--PM--D
> match 2 + padding
DD-P----
> match 3 + match 2
DD-PMIN-
```

## Structural Templates

Structural templates can be specified only for protein chains:

```json
"templates": [
  {
    "mmcif": ...,
    "queryIndices": [0, 1, 2, 4, 5, 6],
    "templateIndices": [0, 1, 2, 3, 4, 8]
  }
]
```

A template is specified as an mmCIF string containing a single chain with the
structural template together with a 0-based mapping that maps query residue
indices to the template residue indices. The mapping is specified using two
lists of the same length. E.g. to express a mapping `{0: 0, 1: 2, 2: 5, 3: 6}`,
you would specify the two indices lists as:

```json
"queryIndices":    [0, 1, 2, 3],
"templateIndices": [0, 2, 5, 6]
```

You can provide multiple structural templates. Note that if an mmCIF containing
more than one chain is provided, you will get an error since it is not possible
to determine which of the chains should be used as the template.

## Bonds

To manually specify covalent bonds, use the `bondedAtomPairs` field. This is
intended for modelling covalent ligands, and for defining multi-CCD ligands
(e.g. glycans). Defining covalent bonds between or within polymer entities is
not currently supported.

Bonds are specified as pairs of (source atom, destination atom), with each atom
being uniquely addressed using 3 fields:

*   **Entity ID** (`str`): this corresponds to the `id` field for that entity.
*   **Residue ID** (`int`): this is 1-based residue index *within* the chain.
    For single-residue ligands, this is simply set to 1.
*   **Atom name** (`str`): this is the unique atom name *within* the given
    residue. The atom name for protein/RNA/DNA residues or CCD ligands can be
    looked up in the CCD for the given chemical component. This also explains
    why SMILES ligands don't support bonds: there is no atom name that could be
    used to define the bond. This shortcoming can be addressed by using the
    user-provided CCD format (see below).

The example below shows two bonds:

```json
"bondedAtomPairs": [
  [["A", 145, "SG"], ["L", 1, "C04"]],
  [["J", 1, "O6"], ["J", 2, "C1"]]
]
```

The first bond is between chain A, residue 145, atom SG and chain L, residue 1,
atom C04. This is a typical example for a covalent ligand. The second bond is
between chain J, residue 1, atom O6 and chain J, residue 2, atom C1. This bond
is within the same entity and is a typical example when defining a glycan.

All bonds are implicitly assumed to be covalent bonds. Other bond types are not
supported.

### Defining Glycans

Glycans are bound to a protein residue, and they are typically formed of
multiple chemical components. To define a glycan, define a new ligand with all
of the chemical components of the glycan. Then define a bond that links the
glycan to the protein residue, and all bonds that are within the glycan between
its individual chemical components.

For example, to define the following glycan composed of 4 components (CMP1,
CMP2, CMP3, CMP4) bound to an asparagine in a protein chain A:
ALA            CMP4
 |              |
ASN ―― CMP1 ―― CMP2
 |              |
ALA            CMP3

```

You will need to specify:

1.  Protein chain A.
2.  Ligand chain B with the 4 components.
3.  Bonds ASN-CMP1, CMP1-CMP2, CMP2-CMP3, CMP2-CMP4.

## User-provided CCD

There are two approaches to model a custom ligand not defined in the CCD. If the
ligand is not bonded to other entities, it can be defined using a
[SMILES string](https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System).
Otherwise, it is necessary to define that particular ligand using the
[CCD mmCIF format](https://www.wwpdb.org/data/ccd#mmcifFormat).

Once defined, this ligand needs to be assigned a name that doesn't clash with
existing CCD ligand names (e.g. `LIG-1`). Avoid underscores (`_`) in the name,
as it could cause issues in the mmCIF format.

The newly defined ligand can then be used as a standard CCD ligand using its
custom name, and bonds can be linked to it using its named atom scheme.

### User-provided CCD Format

The user-provided CCD must be passed in the `userCCD` field (in the root of the
input JSON) as a string. Note that JSON doesn't allow newlines within strings,
so newline characters (`\n`) must be used to delimit lines. Single rather than
double quotes should also be used around strings like the chemical formula.

The main pieces of information used are the atom names and elements, bonds, and
also the ideal coordinates (`pdbx_model_Cartn_{x,y,z}_ideal`) which essentially
serve as a structural template for the ligand if RDKit fails to generate
conformers for that ligand.

The `userCCD` can also be used to redefine standard chemical components in the
CCD. This can be useful if you need to redefine the ideal coordinates.

Below is an example `userCCD` redefining component X7F, which serves to
illustrate the required sections. For readability purposes, newlines have not
been replaced by `\n`.

```
data_MY-X7F
#
_chem_comp.id MY-X7F
_chem_comp.name '5,8-bis(oxidanyl)naphthalene-1,4-dione'
_chem_comp.type non-polymer
_chem_comp.formula 'C10 H6 O4'
_chem_comp.mon_nstd_parent_comp_id ?
_chem_comp.pdbx_synonyms ?
_chem_comp.formula_weight 190.152
#
loop_
_chem_comp_atom.comp_id
_chem_comp_atom.atom_id
_chem_comp_atom.alt_atom_id
_chem_comp_atom.type_symbol
_chem_comp_atom.charge
_chem_comp_atom.pdbx_align
_chem_comp_atom.pdbx_aromatic_flag
_chem_comp_atom.pdbx_leaving_atom_flag
_chem_comp_atom.pdbx_stereo_config
_chem_comp_atom.pdbx_backbone_atom_flag
_chem_comp_atom.pdbx_n_terminal_atom_flag
_chem_comp_atom.pdbx_c_terminal_atom_flag
_chem_comp_atom.model_Cartn_x
_chem_comp_atom.model_Cartn_y
_chem_comp_atom.model_Cartn_z
_chem_comp_atom.pdbx_model_Cartn_x_ideal
_chem_comp_atom.pdbx_model_Cartn_y_ideal
_chem_comp_atom.pdbx_model_Cartn_z_ideal
_chem_comp_atom.pdbx_component_atom_id
_chem_comp_atom.pdbx_component_comp_id
_chem_comp_atom.pdbx_ordinal
MY-X7F C02 C1 C 0 1 N N N N N N 48.727 17.090 17.537 -1.418 -1.260 0.018 C02 MY-X7F 1
MY-X7F C03 C2 C 0 1 N N N N N N 47.344 16.691 17.993 -0.665 -2.503 -0.247 C03 MY-X7F 2
MY-X7F C04 C3 C 0 1 N N N N N N 47.166 16.016 19.310 0.677 -2.501 -0.235 C04 MY-X7F 3
MY-X7F C05 C4 C 0 1 N N N N N N 48.363 15.728 20.184 1.421 -1.257 0.043 C05 MY-X7F 4
MY-X7F C06 C5 C 0 1 Y N N N N N 49.790 16.142 19.699 0.706 0.032 0.008 C06 MY-X7F 5
MY-X7F C07 C6 C 0 1 Y N N N N N 49.965 16.791 18.444 -0.706 0.030 -0.004 C07 MY-X7F 6
MY-X7F C08 C7 C 0 1 Y N N N N N 51.249 17.162 18.023 -1.397 1.240 -0.037 C08 MY-X7F 7
MY-X7F C10 C8 C 0 1 Y N N N N N 52.359 16.893 18.837 -0.685 2.443 -0.057 C10 MY-X7F 8
MY-X7F C11 C9 C 0 1 Y N N N N N 52.184 16.247 20.090 0.679 2.445 -0.045 C11 MY-X7F 9
MY-X7F C12 C10 C 0 1 Y N N N N N 50.899 15.876 20.515 1.394 1.243 -0.013 C12 MY-X7F 10
MY-X7F O01 O1 O 0 1 N N N N N N 48.876 17.630 16.492 -2.611 -1.301 0.247 O01 MY-X7F 11
MY-X7F O09 O2 O 0 1 N N N N N N 51.423 17.798 16.789 -2.752 1.249 -0.049 O09 MY-X7F 12
MY-X7F O13 O3 O 0 1 N N N N N N 50.710 15.236 21.750 2.750 1.257 -0.001 O13 MY-X7F 13
MY-X7F O14 O4 O 0 1 N N N N N N 48.229 15.189 21.234 2.609 -1.294 0.298 O14 MY-X7F 14
MY-X7F H1 H1 H 0 1 N N N N N N 46.487 16.894 17.367 -1.199 -3.419 -0.452 H1 MY-X7F 15
MY-X7F H2 H2 H 0 1 N N N N N N 46.178 15.732 19.640 1.216 -3.416 -0.429 H2 MY-X7F 16
MY-X7F H3 H3 H 0 1 N N N N N N 53.348 17.177 18.511 -1.221 3.381 -0.082 H3 MY-X7F 17
MY-X7F H4 H4 H 0 1 N N N N N N 53.040 16.041 20.716 1.212 3.384 -0.062 H4 MY-X7F 18
MY-X7F H5 H5 H 0 1 N N N N N N 50.579 17.904 16.365 -3.154 1.271 0.830 H5 MY-X7F 19
MY-X7F H6 H6 H 0 1 N N N N N N 49.785 15.059 21.877 3.151 1.241 -0.880 H6 MY-X7F 20
#
loop_
_chem_comp_bond.comp_id
_chem_comp_bond.atom_id_1
_chem_comp_bond.atom_id_2
_chem_comp_bond.value_order
_chem_comp_bond.pdbx_aromatic_flag
_chem_comp_bond.pdbx_stereo_config
_chem_comp_bond.pdbx_ordinal
MY-X7F O01 C02 DOUB N N 1
MY-X7F O09 C08 SING N N 2
MY-X7F C02 C03 SING N N 3
MY-X7F C02 C07 SING N N 4
MY-X7F C03 C04 DOUB N N 5
MY-X7F C08 C07 DOUB Y N 6
MY-X7F C08 C10 SING Y N 7
MY-X7F C07 C06 SING Y N 8
MY-X7F C10 C11 DOUB Y N 9
MY-X7F C04 C05 SING N N 10
MY-X7F C06 C05 SING N N 11
MY-X7F C06 C12 DOUB Y N 12
MY-X7F C11 C12 SING Y N 13
MY-X7F C05 O14 DOUB N N 14
MY-X7F C12 O13 SING N N 15
MY-X7F C03 H1 SING N N 16
MY-X7F C04 H2 SING N N 17
MY-X7F C10 H3 SING N N 18
MY-X7F C11 H4 SING N N 19
MY-X7F O09 H5 SING N N 20
MY-X7F O13 H6 SING N N 21
#
_pdbx_chem_comp_descriptor.type SMILES_CANONICAL
_pdbx_chem_comp_descriptor.descriptor 'Oc1ccc(O)c2C(=O)C=CC(=O)c12'
#
```

## Full Example

An example illustrating all the aspects of the input format is provided below.
Note that AlphaFold 3 won't run this input out of the box as it abbreviates
certain fields and the sequences are not biologically meaningful.

```json
{
  "name": "Hello fold",
  "modelSeeds": [10, 42],
  "sequences": [
    {
      "protein": {
        "id": "A",
        "sequence": "PVLSCGEWQL",
        "modifications": [
          {"ptmType": "HY3", "ptmPosition": 1},
          {"ptmType": "P1L", "ptmPosition": 5}
        ],
        "unpairedMsa": ...,
      }
    },
    {
      "protein": {
        "id": "B",
        "sequence": "RPACQLW",
        "templates": [
          {
            "mmcif": ...,
            "queryIndices": [0, 1, 2, 4, 5, 6],
            "templateIndices": [0, 1, 2, 3, 4, 8]
          }
        ]
      }
    },
    {
      "dna": {
        "id": "C",
        "sequence": "GACCTCT",
        "modifications": [
          {"modificationType": "6OG", "basePosition": 1},
          {"modificationType": "6MA", "basePosition": 2}
        ]
      }
    },
    {
      "rna": {
        "id": "E",
        "sequence": "AGCU",
        "modifications": [
          {"modificationType": "2MG", "basePosition": 1},
          {"modificationType": "5MC", "basePosition": 4}
        ],
        "unpairedMsa": ...
      }
    },
    {
      "ligand": {
        "id": ["F", "G", "H"],
        "ccdCodes": ["ATP"]
      }
    },
    {
      "ligand": {
        "id": "I",
        "ccdCodes": ["NAG", "FUC"]
      }
    },
    {
      "ligand": {
        "id": "Z",
        "smiles": "CC(=O)OC1C[NH+]2CCC1CC2"
      }
    }
  ],
  "bondedAtomPairs": [
    [["A", 1, "CA"], ["B", 1, "CA"]],
    [["A", 1, "CA"], ["G", 1, "CHA"]],
    [["J", 1, "O6"], ["J", 2, "C1"]]
  ],
  "userCcd": ...,
  "dialect": "alphafold3",
  "version": 1
}

```