Newer
Older
Matthew K Defenderfer
committed
import cudf
Matthew K Defenderfer
committed
import pandas as pd
Matthew K Defenderfer
committed
import dask.dataframe as dd
import dask_cudf
Matthew K Defenderfer
committed
from .utils import as_timedelta
from ..db.utils import CHURN_TBL_COLS
from typing import Literal, List
Matthew K Defenderfer
committed
from typeguard import typechecked
__all__ = ['get_aggregator']
# ENH: In the future, probably need to wrap the manager and backend type into a class. That class would contain the
# read_parquet function instead of putting it in the aggregation classes. This would separate everything out more
# sensibly
@typechecked
class Aggregator:
def __init__(self):
self.backend = None
self.cuda = None
def _cut(
self,
ser: pd.Series | cudf.Series,
bins: List[int | pd.Timestamp],
labels: List[str] | None = None,
Matthew K Defenderfer
committed
**kwargs
) -> pd.Series | cudf.Series:
right = kwargs.pop('right',False)
if self.cuda:
func = cudf.cut
ser = ser.astype('int64')
else:
func = pd.cut
grps = func(ser,bins=bins,labels=labels,right=right,**kwargs)
if labels is not None:
grps = grps.cat.reorder_categories(labels[::-1], ordered = True)
return grps
def create_timedelta_cutoffs(
self,
delta_vals: int | List[int],
Matthew K Defenderfer
committed
delta_unit: Literal['D','W','M','Y'],
run_date: pd.Timestamp | np.datetime64
) -> List[int | pd.Timestamp]:
Matthew K Defenderfer
committed
deltas = pd.Series([as_timedelta(c,delta_unit) for c in delta_vals])
cutoffs = pd.to_datetime(run_date - deltas)
cutoffs = (
pd.concat(
[
cutoffs,
pd.Series([pd.to_datetime('today'),pd.to_datetime('1970-01-01')])
]
)
.sort_values()
)
return cutoffs.astype('int64').to_list() if self.cuda else cutoffs.to_list()
def create_timedelta_labels(
self,
delta_vals: List[int],
Matthew K Defenderfer
committed
delta_unit: Literal['D','W','M','Y'],
) -> List[str]:
Matthew K Defenderfer
committed
delta_vals.sort(reverse=True)
deltas = [f'{d}{delta_unit}' for d in delta_vals]
labels = [f'>{deltas[0]}'] + [f'{deltas[i+1]}-{deltas[i]}' for i in range(len(deltas)-1)] + [f'<{deltas[-1]}']
return labels
class PandasAggregator(Aggregator):
def __init__(self):
self.backend = 'pandas'
self.cuda = False
def read_parquet(self,dataset_path,**kwargs) -> pd.DataFrame:
return pd.read_parquet(dataset_path,**kwargs)
def cut_dt(self,series,*args,**kwargs) -> pd.Series:
return self._cut(series,*args,**kwargs)
def aggregate(
self,
col: str | List[str],
grps: str | List[str],
funcs: str | List[str]
Matthew K Defenderfer
committed
) -> pd.DataFrame:
df_agg = (
df.groupby(grps,observed = True)[col]
.agg(funcs)
.sort_index(level=[0,1])
.reset_index()
)
return df_agg
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def calculate_churn(self,df1,df2) -> pd.Series:
dfm = pd.merge(df1,df2,how='outer',left_index=True,right_index=True)
conditions = [
dfm['access_x'].isna(),
dfm['access_y'].isna(),
(dfm['modify_x'] != dfm['modify_y']).fillna(False),
(dfm['access_x'] != dfm['access_y']).fillna(False)
]
choices = np.arange(0,4)
mapping = {
0:'created',
1:'deleted',
2:'modified',
3:'accessed',
-1:None
}
dfm['type'] = np.select(conditions,choices,default=-1)
dfm['type'] = dfm['type'].map(mapping)
if dfm['type'].isna().all():
ser = pd.Series(
data = 0,
index = CHURN_TBL_COLS
)
else:
dfm = dfm.loc[dfm['type'].notna()]
modified = dfm.loc[dfm['type'] == 'modified']
modified_bytes_net = modified['size_y'].sum() - modified['size_x'].sum()
# Instead of writing logic to aggregate across initial size for deleted files and final size for all other
# files, we can essentially condense size across both columns into a new column. Size of deleted files will
# come from size_x while all other files will come from size_y.
dfm['size'] = dfm['size_y'].where(dfm['size_y'].notna(),dfm['size_x'])
agg_df = dfm.groupby('type',observed=True)['size'].agg(['sum','count'])
agg_df.columns = ['bytes','files']
agg_df = agg_df.melt(value_vars=['bytes','files'],ignore_index=False).set_index('variable',append=True)
agg_df.index = agg_df.index.map('_'.join).str.removesuffix('_files')
agg_df.loc['modified_bytes_net'] = modified_bytes_net
for c in CHURN_TBL_COLS:
if c not in agg_df.index:
agg_df.loc[c] = 0
return agg_df['value']
Matthew K Defenderfer
committed
class CUDFAggregator(Aggregator):
def __init__(self):
self.backend = 'cudf'
self.cuda = True
def read_parquet(self,dataset_path,**kwargs) -> cudf.DataFrame:
return cudf.read_parquet(dataset_path,**kwargs)
def cut_dt(self,series,*args,**kwargs) -> pd.Series:
return self._cut(series,*args,**kwargs)
def aggregate(
self,
df: cudf.DataFrame,
col: str | List[str],
grps: str | List[str],
funcs: str | List[str]
Matthew K Defenderfer
committed
) -> pd.DataFrame:
df_agg = (
df.groupby(grps,observed = True)[col]
.agg(funcs)
.sort_index(level=[0,1])
.to_pandas()
.reset_index()
)
return df_agg
def create_memory_pool(self,size,**kwargs):
pool_allocator = kwargs.pop('pool_allocator',True)
managed_memory = kwargs.pop('managed_memory',True)
rmm.reinitialize(
pool_allocator=pool_allocator,
managed_memory=managed_memory,
initial_pool_size=size,
**kwargs
)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def calculate_churn(self,df1,df2) -> pd.Series:
dfm = cudf.merge(df1,df2,how='outer',left_index=True,right_index=True)
conditions = [
dfm['access_x'].isna(),
dfm['access_y'].isna(),
(dfm['modify_x'] != dfm['modify_y']).fillna(False),
(dfm['access_x'] != dfm['access_y']).fillna(False)
]
choices = cupy.arange(0,4)
mapping = {
0:'created',
1:'deleted',
2:'modified',
3:'accessed',
-1:None
}
dfm['type'] = cupy.select(conditions,choices,default=-1)
dfm['type'] = dfm['type'].map(mapping)
if dfm['type'].isna().all():
ser = pd.Series(
data = 0,
index = CHURN_TBL_COLS
)
dfm = dfm.loc[dfm['type'].notna()]
modified = dfm.loc[dfm['type'] == 'modified']
modified_bytes_net = modified['size_y'].sum() - modified['size_x'].sum()
dfm['size'] = dfm['size_y'].where(dfm['size_y'].notna(),dfm['size_x'])
agg_df = dfm.groupby('type',observed=True)['size'].agg(['sum','count'])
agg_df.columns = ['bytes','files']
agg_df = agg_df.to_pandas().melt(value_vars=['bytes','files'],ignore_index=False).set_index('variable',append=True)
agg_df.index = agg_df.index.map('_'.join).str.removesuffix('_files')
agg_df.loc['modified_bytes_net'] = modified_bytes_net
for c in CHURN_TBL_COLS:
if c not in agg_df.index:
agg_df.loc[c] = 0
return agg_df['value']
Matthew K Defenderfer
committed
class DaskAggregator(Aggregator):
def __init__(self):
self.backend = 'dask'
self.cuda = False
def cut_dt(self,series,*args,**kwargs) -> cudf.Series:
return series.map_partitions(self._cut,*args,**kwargs)
def aggregate(
self,
df: dd.DataFrame,
col: str | List[str],
grps: str | List[str],
funcs: str | List[str]
Matthew K Defenderfer
committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
) -> pd.DataFrame:
df_agg = (
df.groupby(grps,observed = True)[col]
.agg(funcs)
.compute()
.sort_index(level=[0,1])
.reset_index()
)
return df_agg
def read_parquet(self,dataset_path,**kwargs) -> dd.DataFrame:
split_row_groups = kwargs.pop('split_row_groups',False)
return dd.read_parquet(dataset_path,split_row_groups=split_row_groups,**kwargs)
class DaskCUDFAggregator(Aggregator):
def __init__(self):
self.backend = 'dask_cuda'
self.cuda = True
def cut_dt(self,series,*args,**kwargs) -> dask_cudf.Series:
return series.map_partitions(self._cut,*args,**kwargs)
def aggregate(
self,
df: dask_cudf.DataFrame,
col: str | List[str],
grps: str | List[str],
funcs: str | List[str]
Matthew K Defenderfer
committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
) -> pd.DataFrame:
df_agg = (
df.groupby(grps,observed = True)[col]
.agg(funcs)
.compute()
.sort_index(level=[0,1])
.to_pandas()
.reset_index()
)
return df_agg
def read_parquet(self,dataset_path,**kwargs) -> dd.DataFrame:
split_row_groups = kwargs.pop('split_row_groups',False)
return dd.read_parquet(dataset_path,split_row_groups=split_row_groups,**kwargs)
def get_aggregator(backend) -> PandasAggregator | CUDFAggregator | DaskAggregator | DaskCUDFAggregator:
match backend:
case 'pandas':
return PandasAggregator()
case 'cudf':
return CUDFAggregator()
case 'dask':
return DaskAggregator()
case 'dask_cuda':
return DaskCUDFAggregator()
case _:
raise ValueError(f"Unsupported backend: {backend}")